4 resultados para CLOT LYSIS

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine is an effective antiseptic used widely in disinfecting products (hand soap), oral products (mouthwash), and is known to have potential applications in the textile industry. Chlorhexidine has been studied extensively through a biological and biochemical lens, showing evidence that it attacks the semipermeable membrane in bacterial cells. Although extremely lethal to bacterial cells, the present understanding of the exact mode of action of chlorhexidine is incomplete. A biophysical approach has been taken to investigate the potential location of chlorhexidine in the lipid bilayer. Deuterium nuclear magnetic resonance was used to characterize the molecular arrangement of mixed phospholipid/drug formulations. Powder spectra were analyzed using the de-Pake-ing technique, a method capable of extracting both the orientation distribution and the anisotropy distribution functions simultaneously. The results from samples of protonated phospholipids mixed with deuterium-labelled chlorhexidine are compared to those from samples of deuterated phospholipids and protonated chlorhexidine to determine its location in the lipid bilayer. A series of neutron scattering experiments were also conducted to study the biophysical interaction of chlorhexidine with a model phospholipid membrane of DMPC, a common saturated lipid found in bacterial cell membranes. The results found the hexamethylene linker to be located at the depth of the glycerol/phosphate region of the lipid bilayer. As drug concentration was increased in samples, a dramatic decrease in bilayer thickness was observed. Differential scanning calorimetry experiments have revealed a depression of the DMPC bilayer gel-to-lamellar phase transition temperature with an increasing drug concentration. The enthalpy of the transition remained the same for all drug concentrations, indicating a strictly drug/headgroup interaction, thus supporting the proposed location of chlorhexidine. In combination, these results lead to the hypothesis that the drug is folded approximately in half on its hexamethylene linker, with the hydrophobic linker at the depth of the glycerol/phosphate region of the lipid bilayer and the hydrophilic chlorophenyl groups located at the lipid headgroup. This arrangement seems to suggest that the drug molecule acts as a wedge to disrupt the bilayer. In vivo, this should make the cell membrane leaky, which is in agreement with a wide range of bacteriological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mortierella pusilla is a susceptible host and supports good growth of the mycoparasite, Piptocephalis virginiana. Uninucleate spores of M. pusilla were sUbjected to N-methyl-N'-nitro-nitrosoguanidine (MNNG). To attain a high mutation frequency , a 1o-minute exposure to 10 mg/ml MNNG was used and lead to the survival of about 10 % of the spores. The exposed spores then were plated on chitin or milk plates. Approximately 30,000 colonies were examined after mutagenesis on the screening media. A strain, MUT23 , with abnormal slow growth morphology was found to delay parasitism by £. virginiana. The particular morphology was not due to auxotrophy, because this strain displayed normal hyphae when glucose was used as the sole carbon source. One interesting phenomenon was that MUT23 showed an extensive clearing zone around the colony on colloidal chitin agar after 20-25 d. On the same conditions, wild type strain did not show this phenotype. In addition, the MUT23 strain produced the same normal hypha as the wild type strain when it was grown on colloidal chitin agar. The MUT23 was also able to produce more spores on colloidal chitin agar than on malt-yeast extract and minimal media. The parasite germ tubes formed appressoria at the point of contact on the cell surface of wild type and MUT23 grown for 6 days cell surface but not on the cel surface of MUT23 grown for 2 days. Thus, interaction between MUT23 strain and the mycoparasite was dependent on MUT23 age. The effect of MUT23 filtrate on germination of the parasite was tested. Lysis of germinated spores of the parasite were observed in concentrated MUT23 filtered solution. MUT23 was compared to the wild type strain for their chitinase production in sUbmerged culture. The chitinase isozymes of both wild type and MUT23 were shown by immunoblotting. Eight distinct chitinase molecules were detected. MUT23 showed markedly higher chitinase activity than the wild type cultured in chitin-containing medium. Maximum chitinase activities of MUT23 were 13.5 fold higher at 20 day of the culture then that of wild type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vertebrates, signaling by retinoic acid (RA) is known to play an important role in embryonic development, as well as organ homeostasis in the adult. In organisms such as adult axolotls and newts, RA is also important for regeneration of the CNS, limb, tail, and many other organ systems. RA mediates many of its effects in development and regeneration through nuclear receptors, known as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). This study provides evidence for an important role of the RA receptor, RAR~2, in ,( '. regeneration ofthe spinal cord and tail of the adult newt. It has previously been proposed that the ability of the nervous system to regenerate might depend on the presence or absence of this RAR~2 isoform. Here, I show for the very first time, that the regenerating spinal cord of the adult newt expresses this ~2 receptor isoform, and inhibition of retinoid signaling through this specific receptor with a selective antagonist inhibits tail and spinal cord regeneration. This provides the first evidence for a role of this receptor in this process. Another species capable of CNS ~~generation in the adult is the invertebrate, " Lymnaea stagnalis. Although RA has been detected in a small number of invertebrates (including Lymnaea), the existence and functional roles of the retinoid receptors in most invertebrate non-chordates, have not been previously studied. It has been widely believed, however, that invertebrate non-chordates only possess the RXR class of retinoid receptors, but not the RARs. In this study, a full-length RXR cDNA has been cloned, which was the first retinoid receptor to be discovered in Lymnaea. I then went on to clone the very first full-length RAR eDNA from any non-chordate, invertebrate species. The functional role of these receptors was examined, and it was shown that normal molluscan development was altered, to varying degrees, by the presence of various RXR and RAR agonists or antagonists. The resulting disruptions in embryogenesis ranged from eye and shell defects, to complete lysis of the early embryo. These studies strongly suggest an important role for both the RXR and RAR in non-chordate development. The molluscan RXR and RAR were also shown to be expressed in the adult, nonregenerating eNS, as well as in individual motor neurons regenerating in culture. More specifically, their expression displayed a non-nuclear distfibution, suggesting a possible non-genomic role for these 'nuclear' receptors. It was shown that immunoreactivity for the RXR was present in almost all regenerating growth cones, and (together with N. Farrar) it was shown that this RXR played a novel, non-genomic role in mediating growth cone turning toward retinoic acid. Immunoreactivity for the novel invertebrate RAR was also found in the regenerating growth cones, but future work will be required to determine its functional role in nerve cell regeneration. Taken together, these data provide evidence for the importance of these novel '. retinoid receptors in development and regeneration, particularly in the adult nervous system, and the conservation of their effects in mediating RA signaling from invertebrates to vertebrates.